
Using a dependent type checker

as a theorem prover

Randall Holmes

June 5, 2020

1



We will explain what a dependent type checker

is and explain why it can be used as a theo-

rem prover, with examples of interaction with

actual software.



Simple type theory

We describe the simple typed theory of func-

tions of Church. There is an underlying sort ι

of individuals. For each pair of sorts α, β, there

is a sort α × β inhabited by pairs (a, b) where

a is of sort α and b is of sort β, and a sort

α → β inhabited by functions from type α to

type β: if x is of type α and f is of type α→ β,

then f(x) is of type β [the formal similarity to

the logical rule of modus ponens should not

be overlooked]. Other types which might be

present are the type 2 of booleans (truth val-

ues) and the type ν of natural numbers.

2



Types should not be thought of as sets, al-

though an interpretation of a type theory in an

untyped framework such as the usual set the-

ory ZFC will associate each type with the set of

its inhabitants. A better analogy is with gram-

matical parts of speech. It can be verified rea-

sonably readily that if each variable is assigned

a type, then the well-formedness and the type

of any composite expression built using func-

tion application and the ordered pair can be

determined entirely on syntactical grounds.

3



Another construction should be noticed: if x is

a variable of type α and T [x] is a term of type

β (the bracket [x] just indicating that this is

an expression which might contain the variable

x), (λx : T [x]) is a term of type α → β, repre-

senting the function whose definition might be

given in the form f(x) = T [x].

Notice that in this theory the notion of func-

tion is primitive: we do not consider a function

to be a set of ordered pairs (though it might

be implemented in this way in a model of the

theory in set theory).

Notice also that the notation encourages the

traditional view of a function as a rule.

In fact, the natural implementation of a set of

objects of type α is as the type of functions

α → 2, though we could introduce a primitive

construction P(α) for power types.

4



The simple type theory here described is a

fairly good medium for defining standard kinds

of mathematical object. Its syntactical con-

straints have made it unpopular for doing math-

ematics, though it is quite popular in theoret-

ical computer science.

5



Dependent type theory

Dependent type theory admits the same basic

constructions as those of the simple type the-

ory just described, namely cartesian products

and function spaces. The additional feature

is that the types of projections of pairs or of

arguments or values of functions may depend

on earlier projections (in the case of pairs) or

earlier arguments of the same function (in the

case of argument of a function) or on argu-

ments of the function (in the case of the value

of a function).

A perhaps silly example of a dependently typed

function is the function f(n, a) (n being a nat-

ural number, a being of type α) which returns

the tuple (a, . . . , a) ∈ αn ((a1, . . . , an) abbreviat-

ing (a1, (a2, . . . , an)) αn abbreviating α× αn−1,

where n > 2 and α1 simply means α.

6



Formal notation: if T [x] is an expression of sort

F [x] possibly depending on x, then (λx : T ) is

a function of the dependent type (Λx : F [x]),

again exactly the function f we would define

by the rule f(x) = T [x].

In the example above, the function f has type

(Λ((n, a) : αn) (if n is understood to be a nat-

ural number variable and a to be a variable of

type α).

There are similar dependent product construc-

tions, building ordered pairs or longer tuples in

which the type of later projections can depend

on the type of earlier ones: an example might

be a type inhabited by pairs (n, (a1, . . . , an))

whose first component is a natural number and

whose second component is an inhabitant of

the type αn. We will not explore notation for

these as we will only make use of dependent

function types.

7



There are mathematical constructions (and com-

puter science constructions) for which depen-

dent types afford a natural implementation.

The specific application we will emphasize here

is the implementation of mathematical proofs

rather than of mathematical objects in the usual

sense.

We have already hinted at a relationship be-

tween function types and proofs of implica-

tions which we now make specific. If we have

a type proofs(P ) of proofs of [or evidence for]

a proposition P and a type proofs(Q) of proofs

of Q, then any element of the function space

proofs(P )→ proofs(Q) witnesses the fact that

P → Q.

8



The device of dependent types allows us to

represent proofs of universally quantified state-

ments by functions in a similar way.

Suppose that P (x) is of type 2 (a truth value)

for each x of type α (the function P represents

a predicate of type α objects). Then a function

of the type (Λx : proofs(P (x))) is a function

which takes each x in type α to a proof of P (x):

this function witnesses the truth of (∀x : P (x))

(the quantifier is restricted to type α, but this

is indicated by the known type of the variable

x).

9



This correspondence between type construc-

tions and constructions of propositions is called

the Curry-Howard isomorphism. Curry and Howard

discovered it independently; a third indepen-

dent discoverer of the same phenomenon was

de Bruijn, the developer of the first significant

computer assisted reasoning project, known as

Automath, a Dutch project of the 1970’s.

10



We give some very simple examples of basic

logical proofs which can be constructed in this

kind of framework, in terms of our abstract

notation (as we will see, there are some differ-

ences between the formalism given above and

the official formalism of our implementation).

Consider the function (λx : x), where x is a

variable of type proofs(P ). This is a function

taking a proof of P to a proof of P , and wit-

nesses the truth of P → P .

11



We note that an element of the type proofs(P )×
proofs(Q) can be taken to witness the truth of
P ∧ Q, since it contains a proof of P and a
proof of Q as components. Now suppose that
we have x a variable of type α as usual and a
variable u of type

(Λx : (proofs(P (x))→ proofs(Q(x))))×(Λx : (proofs(Q(x))→ proofs(R(x)))).

You can track down the fact that an object

of this type witnesses a proof of

(∀x : P (x)→ Q(x)) ∧ (∀x : Q(x)→ R(x)).

12



Further let p be a variable of type proofs(P ).

Now consider the function

(λu : (λx : (λp : (π2(u)(x)(π1(u)(x)(p)))))).

We have to unwrap this to see if it makes

sense. π1(u)(x)(p) is a proof of Q(x).

π2(u)(x)(π1(u)(x)(p)) is a proof of R(x).

(λp : (π2(u)(π1(u)(p)))) is a proof of P (x) →
R(x).

(λx : (λp : (π2(u)(x)(π1(u)(x)(p)))))

is a proof of (∀x : P (x)→ R(x))

13



And finally

(λu : (λx : (λp : (π2(u)(x)(π1(u)(x)(p))))))

witnesses a proof of

((∀x : P (x)→ Q(x)) ∧ (∀x : Q(x)→ R(x)))→ (∀x : P (x)→ R(x)).

Notice what we just did. We carried out a

basically grammatical process of type checking

a term of the language of our dependent type

theory and discovered a theorem of logic.

14



Lestrade introduced

We begin to introduce our computer imple-
mentation, Lestrade, which may be viewed as
a dialect of the ancient system Automath.

Lestrade draws a distinction between objects
and functions. It has object sorts and depen-
dent function sorts.

The object sorts can be described briefly.

There is a sort prop inhabited by propositions
(things we can prove). For each object p of
the sort prop, there is a sort that p inhabited
by evidence for p (or proofs that p).

There is a sort type inhabited by objects which
we will call “type labels”. For each object τ of
sort type, there is a sort in τ inhabited by ob-
jects of the type labelled by τ . Typical objects
of these sorts might be Nat (the type of natu-
ral numbers) of sort type and 2 (for example)
of sort in Nat.

15



There is an additional sort obj intended to be

inhabited by “untyped” mathematical objects

(the sets of an implementation of the usual set

theory might be taken to be of this sort; one

should notice though that a Lestrade imple-

mentation of ZFC would not actually be un-

typed, as many complex types of evidence for

propositions would be present).

Note that while we state different intentions

for the constructors prop/that and type/in,

they are actually treated in exactly the same

way by Lestrade.

16



The functions of Lestrade can also be described

quite briefly, but the ramifications of the brief

description are not immediately obvious.

When a sequence of variable arguments x1, . . . , xn

(each of which may be an object or a function)

of types τ1, . . . , τn have been declared – in the

order indicated, where a sort τi can depend

on an argument xj only if j < i, and each τi
depends on no other variables – and a further

object sort τ is given, which may depend on no

variables other than the xi’s – then a function

may be postulated or defined which sends ar-

guments xi of the indicated types τi to output

of type τ .

17



To express this exactly requires some subtlety,
The type of this function (we give the function
the nonce name f) is written

((x1 : τ1), . . . , (xn : τn)⇒ τ).

A term f(t1, . . . , tn) is well-sorted only if t1 is
of sort τ1 (a necessary but not sufficient condi-
tion). If n = 1 the term f(t1) has sort τ [t1/x1]
(the result of replacing x1 with t1 in τ). Other-
wise f(t1, . . . , tn) is well sorted iff f2(x2, . . . , xn)
is well-sorted, and if it is well-sorted has the
same sort, where f2 is a function of sort

((x2 : τ2[t1/x1]), . . . , (xn : τn[t1/x1)⇒ τ [t1/x1]).

For completeness we need to note that substi-
tution into a function sort

((x1 : τ1), . . . , (xn : τn)⇒ τ)

will be carried out after replacement of all the
xi’s with fresh variables x′i not found elsewhere
in the context.

18



If x1, . . . , xn are variables declared earlier and

in that order, and T is an object term depend-

ing on no variables but the xi’s with type τ

depending on no variables but the xi’s then a

function f can be defined denoted by

((x1 : τ1), . . . , (xn : τn)⇒ (T : τ))

of type

((x1 : τ1), . . . , (xn : τn)⇒ τ)

f(t1, . . . , tn) can be computed as one would
expect (mod the complexities of dependent
typing), if it is well-typed. If n = 1, then
f(t1) = T [t1/x1]. Otherwise f(t1, . . . , tn) =
f2(t2, . . . , tn), where the definition of f2 is

((x2 : τ2[t1/x1]), . . . , (xn : τn[t1/x1)⇒ (T [t1/x1], τ [t1/x1])).

19



Where f(t1, . . . , tn) is well-typed and represents

an object (recall that output sorts are always

object sorts) the notation f(t1, . . . , ti) for i < n

represents the function ft1,...,ti with definition

ft1,...,ti(xi+1, . . . , xn) = f(t1, . . . , ti, xi+1, . . . , xn) :

this is a variation of the technique of “cur-

rying”. In Lestrade notation, such truncated

terms occur only as arguments, and never in

applied position.

20



Declaration management

A Lestrade session involves the creation and

management of primitive and defined atomic

terms (single identifiers).

Atomic terms are organized into moves. At

any given time there are moves 0,1, . . . , i, i+ 1

(moves 0 and 1 are always present). Move i is

called the last move. Move i + 1 is called the

next move.

The semantics of this is that primitive terms

of move i + 1 are currently regarded as vari-

ables (and defined terms of move i+ 1 will be

complex variable terms). Primitive and defined

atomic terms of lower indexed moves are cur-

rently viewed as constant. Objects and func-

tion declared or defined at move 0 are the prim-

itive object and function constants of the the-

ory (unconditionally constant).

21



The parameter i may be changed: a new move

may be opened, in which case i is incremented

and a new move i+ 1 is introduced, empty of

declarations. The next move may be closed if

i > 1, in which case i is decremented and the

former move i+ 1 is deleted with all its decla-

rations. Either of these moves changes which

primitive terms are currently viewed as possi-

ble parameters for functions to be postulated

or defined.

This is not as exotic an idea as it seems. In

familiar expressions such as f(x, y) = ax + by,

we say that a and b are constants. . . but of

course they are variables. They are at an ear-

lier move in the sense of Lestrade’s declaration

system, and this exact example is something I

have implemented somewhere.



Basic actions available are

1. to declare a variable of any object sort at

move i+ 1. The sort may depend on vari-

ables already declared at move i+ 1. The

order in which variables are declared is re-

membered by Lestrade.

2. to declare a variable of an object sort at

move i (which amounts to postulating a

constant). This sort may depend on de-

fined notions at move i + 1, but in the

computation of its sort these definitions

must be expanded out, and cannot ulti-

mately depend on any variables of move

i+ 1.

3. to declare a primitive atomic function at

move i (not i + 1): the function will be

22



declared as a function of a list of move

i+1 primitive variables (not defined terms)

appearing in the order in which they were

declared, with a stated object sort for its

output: the sort of the function will be

computed and displayed as above.

4. to define an atomic object term at move

i: the new atomic term is equated with an

object term, which may depend on defined

terms declared at move i + 1 (which will

be expanded out) but not on variables at

move i+ 1.

5. to define an atomic function term at move

i: this is declared in the familiar form

f(x1, . . . , xn) = T,

and succeeds if this can be typed success-

fully as indicated above.



Whenever an object is declared at move i, all

defined notions from move i+ 1 are expanded

out. A defined function in applied position is

eliminated by expanding its definition; a de-

fined function appearing as an argument is dis-

played in sort information as a term of the form

given above (basically as a λ-term). There is

a reason for this: move i + 1 might be closed

at any time, so none of its declared identifiers

should appear in moves of lower index. The

variables at move i + 1 become bound vari-

ables with no associated declarations in sort

information at move i (and are assigned fresh

names distinct from those of the original pa-

rameters in the declaration).

23



Lestrade has a capability not formally described

above. Not all arguments of a function need

to be shown: a additional move i + 1 variable

appearing in the sort of one of the explicit ar-

guments or in the output sort will be supplied

as an implicit argument. Under many but not

all conditions, the parser can deduce the values

of implicit arguments from the sorts of the ex-

plicitly given arguments. This is complex, and

does not actually affect the type system: it

is an optimization of input/output. Examples

will be seen.

24



Note that the user never types a λ-term or

function sort: the user notation is strictly ap-

plicative (the only operation is application of

functions to argument lists; the user never writes

anything but applicative terms and object sorts).

The ability to write truncated object terms al-

lows one to in effect write λ-terms depending

on variables in some contexts; the implicit ar-

gument feature allows one to completely avoid

entering function arguments in contexts where

they can be deduced from the sorts of other

arguments.

25



Sort information displayed by Lestrade is slightly

different than the abstract notation given above.

The sort displayed for a defined function is

the same as the abstract representation of the

function

((x1 : τ1), . . . , (xn : τn)⇒ (T : τ));

a primitive function of the same type would

have sort information

((x1 : τ1), . . . , (xn : τn)⇒ (− : τ)).

A defined object would have a sort of the form

(T, τ), identical to τ for purposes of type check-

ing.

26



Note that a function variable of move i+1 can

exist, but must have been declared when the

move which we would currently call i + 2 was

open. Introduction of function variables will be

demonstrated in the examples.

When the close command is issued, move i +

1 just vanishes. It is possible under suitable

circumstances to save a version of move i+ 1

with a name before closing it. The declarations

in the saved move i+1 can be recovered at any

time that one returns to the same version of

move i (which may contain further declarations

made in the interim). In this way the structure

of moves may actually be a tree.

27


